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Genetic analysis of stilbenoid profiles in grapevine
stems reveals a major mQTL hotspot on
chromosome 18 associated with disease-resistance
motifs
Soon L. Teh1,3, Bety Rostandy 1,4, Mani Awale2,5, James J. Luby1, Anne Fennell 2 and Adrian D. Hegeman 1

Abstract
Grapevine (Vitis spp.) contains a wealth of phytochemicals that have received considerable attention due to health-
promoting properties and biological activities as phytoalexins. To date, the genetic basis of the quantitative variations
for these potentially beneficial compounds has been limited. Here, metabolic quantitative trait locus (mQTL) mapping
was conducted using grapevine stems of a segregating F2 population. Metabolic profiling of grapevine stems was
performed using liquid chromatography–high-resolution mass spectrometry (LC-HRMS), resulting in the detection of
1317 ions/features. In total, 19 of these features matched with literature-reported stilbenoid masses and were
genetically mapped using a 1449-SNP linkage map and R/qtl software, resulting in the identification of four mQTLs.
Two large-effect mQTLs that corresponded to a stilbenoid dimer and a trimer were mapped on chromosome 18,
accounting for phenotypic variances of 29.0% and 38.4%. Functional annotations of these large-effect mQTLs on the
VitisNet network database revealed a major hotspot of disease-resistance motifs on chromosome 18. This 2.8-Mbp
region contains 48 genes with R-gene motifs, including variants of TIR, NBS, and LRR, that might potentially confer
resistance to powdery mildew, downy mildew, or other pathogens. The locus also encompasses genes associated with
flavonoid and biosynthetic pathways that are likely involved in the production of secondary metabolites, including
phytoalexins. In addition, haplotype dosage effects of the five mQTLs further characterized the genomic regions for
differential production of stilbenoids that can be applied in resistance breeding through manipulation of stilbenoid
production in planta.

Introduction
Grapes have been recognized as a rich source of phy-

tochemicals, such as phenolic compounds, which are
beneficial to plant and human health. A single glass of red
wine that is obtained from the fermented extract of 100 to
140 berries contains up to 500 mg of polyphenolic com-
pounds, depending on varieties and vinification

methods1,2. Within the diversity of polyphenolics, stilbe-
noids represent a relatively restricted group of phenols
that is derived from the general phenylpropanoid path-
way, and are found in Vitaceae as well as several other
plant families3. Stilbenoids have received considerable
attention due to (1) epidemiological studies attributing
moderate consumption of red wine to health benefits, and
(2) biological activities as phytoalexins4–10.
The production of stilbenoids can be induced by

abiotic (e.g., UV irradiation, mechanical injury), as well
as biotic (e.g., fungal pathogens) stresses8–12. Hypothe-
sized to protect against pathogen infection, stilbenoid
production varies across different plant tissues, in terms
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of concentrations and types. For instance, resveratrol is
induced in grape leaves and berries, but constitutive
expression and accumulation of resveratrol and other
stilbenoids, which are hypothesized to protect against
fungal infection, take place primarily in stems and
roots3.
Due to these activities associated with stilbenoids,

there has been significant interest in developing the
means to artificially manipulate stilbenoid production in
planta3,13. Although breeding objectives in grapevine
vary by region and market targets, the overarching goal
of many programs is to combine high-quality fruit traits
with improved biotic (e.g., diseases and pests) and
abiotic resistance (e.g., climate and environmental
adaptation).
The availability of myriad genetic resources has

enabled routine application of genetic markers for par-
ent and seedling selection, or marker-assisted breeding.
In addition to genomic resources, metabolomics is a
field that is receiving more attention in the area of crop
breeding. Metabolomics is an analytical field that pro-
vides a comprehensive investigation of metabolite var-
iations in a biological system14,15. Coupled with
resources from genomics and transcriptomics, metabo-
lomics is developing as an integrative functional tool for
crop breeding16.
In a classical QTL-mapping experiment, two parents are

crossed so that the measurable trait of interest segregates
in the offspring family and can be statistically associated
with the underlying genetic markers to explain the genetic
basis of variation for the trait17. Despite the advancement
and higher-throughput of modern analytical tools, crop
breeding and genetics have continued to rely on tradi-
tional phenotyping data. There have been limited reports
of chemical profiles being used as metabolic traits for
mapping experiments using known metabolic targets
associated with flavor and aroma18–21, amino acid meta-
bolism22, or fruit color23, or an untargeted strategy for
associating leaf metabolites with complex traits24, or with
insect resistance25.
The aim of this study is to elucidate the genetic basis

of stilbenoid variability in grapevine stem tissue
through genetic mapping of putative stilbenoid com-
pounds based on accurate masses. A facile application
of liquid chromatography–high-resolution mass spec-
trometry (LC-HRMS)-based metabolic profiling was
carried out to identify metabolic QTLs in a segregating
experimental population that targets stilbenoids by
using an analysis strategy that has been shown to be
broadly effective for this compound class3, and by
quantifying features with masses consistent with pre-
viously characterized Vitis stilbenoids without a priori
knowledge of the specific stilbenoids present in this
population.

Results
Profiling of F2 mapping family showed metabolic
inheritance and segregation
Metabolic profiling of the grapevine stems using LC-

HRMS yielded 1317 ions (unique retention time–m/z ion
pairings) in the [M+H]+ mode. An inheritance pattern
of chemical profiles was observed when comparing total
ion chromatograms (TICs) of female grandparent (F0: V.
riparia (USDA PI 588259)), the parent (F1: V. hybrid (16-
9-2)), and a representative F2 progeny (Fig. 1). In addition,
segregation among the F2 progeny was exhibited upon
examination of stilbenoid feature distributions (Fig. 2).
The metabolic segregation of ions provided the founda-
tion for mQTL mapping by treating each ion as a meta-
bolic trait.

Stilbenoid mQTL mapping
From the list of 1317 ions, these ions were matched with

a library of literature-reported stilbenoid masses (Sup-
plementary Table 1). In total, 19 features matched the
library and 17 had sufficient data quality to be used
subsequently as metabolic “traits” for mQTL mapping.
From 19 features, 4 mQTLs were found for 5 metabolic
features (Fig. 3; Table 1) using both interval mapping (IM)
and composite interval mapping (CIM) analyses. These
features belong to different types of stilbene oligomers.
An mQTL for feature M229.1423T503 (m/z: 229.1423;
retention time: 503 s), a monomeric stilbenoid was map-
ped on chromosome 11 (2.8–3.5Mbps) with logarithm of
the odds (LOD) scores of 12.33 (IM) and 8.96 (CIM)
explaining 4.3% of phenotypic variance. Another mono-
meric stilbenoid was mapped on chromosome 14
(27.1–27.9Mbps) with LODs of 3.87 (IM) and 6.96 (CIM),
explaining 3.4% of phenotypic variance. Marker–trait
association for stilbenoid dimer (M453.1357T505) and
trimer (M681.2169T759) identified the same mQTL on
chromosomes 18 (25.0–27.8Mbps) with LODs of 6.26
and 7.69 (IM analysis), explaining 29.0% and 38.4% of
phenotypic variances, respectively. In addition, genetic
analysis of a tetramer stilbenoid, M907.2767T765 detec-
ted an mQTL on chromosome 18 (11.2–11.5Mbps) with
LODs of 3.32 (IM) and 4.70 (CIM) and phenotypic var-
iance of 7.8% (Fig. 3; Table 1).

Haplotypic dosage effects of mQTLs
Construction of dosage-dependent haplotypes at each

locus enabled the characterization of additive and dom-
inance effects that were associated with differential levels
of stilbenoid production. Haplotypes for M229.1423T503
exhibited no statistical difference regardless of allelic
dosage. In contrast, haplotypes for the remaining features
exhibited dosage-dependent effects. For mQTLs of
M229.2006T789 and M907.2767T765, the allelic effects
between the homozygotes (i.e., A1A1 versus A2A2) were
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statistically significant and complete dominance was
exhibited, where the effect of heterozygote (A1A2) equaled
the effect of homozygous dominant (A2A2). Meanwhile,
haplotypes with partial dominance were observed for
mQTL of M681.2169T759 where the effect of A2A2 >
A1A2 > A1A1 (Fig. 4).

An mQTL hotspot on chromosome 18 for disease-
resistance genes/motifs
Subsequent to the discovery of mQTLs, the VitisNet

database was used to provide functional annotations at
the corresponding loci where mQTLs were detected.
For the mQTL of feature M229.1423T503, the physical
positions span a 0.7-Mbp region on chromosome 11
with 57 annotated genes (54 unique). Three of the genes
have roles in disease resistance and plant response to
biotic stresses. The mQTL of M229.2006T789 spans a
0.8-Mbp region on chromosome 14 with 74 functionally
annotated genes, of which six genes were involved
in plant–pathogen interaction, including disease-
resistance genes. Meanwhile, the mQTL for feature

M907.2767T765 was localized to a 0.3-Mbp region on
chromosome 18 with 27 annotated genes. Of these, five
genes were annotated as having possible roles in disease
resistance and plant biotic stresses (Fig. 3; Table 2;
Supplementary File 1).
A major-effect locus explaining 29.0% and 38.4% phe-

notypic variance was co-localized for M453.1357T505 and
M681.2169T759, respectively. The mapped physical
positions span a 2.7-Mbp on chromosome 18 with 147
functionally annotated genes (Fig. 3). A significant
enrichment was identified for the R proteins from
plant–pathogen interaction (vv34627) and the diterpenoid
biosynthesis (vv10904) VitisNet pathways, with 13 and 5
genes annotated to the pathway (Table 2; Supplementary
File 1). A large number of additional genes not annotated
to the pathway but with identified roles in disease resis-
tance were also found in the locus, predominantly Toll/
interleukin-1 receptor (TIR)–nucleotide-binding site
(NBS)–leucine-rich repeat (LRR) (Supplementary File 1).
In addition, 15 genes were annotated as being involved in
flavonoid biosynthetic pathways, as were six genes in
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Fig. 1 The total ion chromatograms for grape stem extracts of grandparent (F0: V. riparia (USDA PI 588259)), parent (F1: V. hybrid (16-9-2)), and a
representative F2 offspring that were analyzed by LC–HRMS
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terpenoid biosynthesis with putative function in
hydroxylation.

Discussion
Mapping loci using variation in metabolite levels of the
progeny
Genes that are involved in a biosynthesis pathway have

been identified either through forward genetics (i.e.,
screening the phenotype to identify gene(s) responsible
for a trait of interest) or reverse genetics (i.e., evaluating
the phenotype subsequent to disruption of gene function).
In traditional crop breeding, the former case has been
routinely applied, resulting in QTL discovery, fine map-
ping, candidate gene cloning, and finally, functional
identification. Despite the eventual identification of genes,
it remains unclear which of the genes account for the
variation in metabolite levels across tissue types and

genotypes. Alternatively, genetic mapping of metabolites
provides a solution to elucidate putative genes that
underlie metabolic variations.
In this study, an integrated approach in an F2 family of

101 offspring linking a genetic map of 1449 SNPs and a
metabolomics data set of 1317 metabolic features that was
coupled with a library of stilbenoid masses resulted in the
discovery of five mQTLs. In addition, the use of a high-
resolution mass spectrometer provided accurate mass
detection of ions from a complex chemical extract,
thereby enabling high-throughput analysis of the mapping
family. Without a priori knowledge of compound identity,
metabolic profiling of an experimental population can
provide thousands of metabolic features to be evaluated in
mQTL mapping. Similar to the conventional marker–trait
association where marker information is derived from a
genetic linkage map while trait information is acquired
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from a variation for phenotype of the trait, a metabolic
feature can be treated as a “trait” to assess marker–“trait”
(feature) association22,24. Significant variation in ion
abundance/intensity is apparent across the 19 features
(Fig. 2). Since the observed distributions of features are
multimodal for segregating traits, and can often be con-
fused with skewed single"-modal distributions, we opted
to perform the QTL analysis without transformation.
Although not required for our data set, log2 and log10
transformations can be performed to normalize the dis-
tribution for other analyses, as needed.

Matching features with a library of stilbenoid masses prior
to mQTL mapping
From the list of 1317 metabolic features, the vast

majority of features did not match with a library of stil-
benoid masses that have been reported in the literature

(Supplementary Table 1). This guided approach enabled a
targeted list of 19 features to be examined for mQTL
mapping. Subsequent mQTL analysis (with genome-wide
threshold of α= 0.10) identified four mQTLs. Despite the
suitability of this method, there are several reasons why
the number of mQTLs may have been underestimated
(i.e., false negatives). First, complex genetic regulation of
metabolites in a pathway could hamper the detection of
mQTLs. The production of one metabolite is likely con-
trolled by several small-effect loci, which may not be
detected during the mapping analysis. In addition, the
complex genetic backgrounds of an already highly het-
erozygous crop may help explain the presence of small-
effect loci, rendering a lower-resolution mQTL mapping.
The ancestry of the F2 mapping family used for this
experiment is comprised of at least six Vitis species,
including V. riparia, V. vinifera, V. rupestris, V. labrusca,
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V. aestivalis, and V. berlandieri. Relevant marker loci of
the highly interspecific hybrid progeny can be lost due to
anchoring on the V. vinifera reference genome during the
GBS process. Finally, the ion signal of metabolic features
could be above the noise threshold for some offspring, but
within the noise threshold for other offspring, likely
resulting in no mQTL detection.

mQTLs on chromosome 18 are coincident with disease-
resistance genes/motifs
In a 2.7-Mbp region on chromosome 18, a hotspot of

disease-resistance genes was jointly detected for features
M453.1357T505 and M681.2169T759 (Fig. 3; Table 1).
The lack of genetic resolution is likely due to the
reduced recombination events in this relatively small F2
family. Although the original F2 family is comprised 424
progeny, dormant cane sections were acquired from only
a subset of this family (i.e., N= 101)26. A comprehensive
analysis using the entire family would likely resolve the
mQTLs detected for features M453.1357T505 and
M681.2169T759.
From the network database, a third of known genes

(Chr. 18: 25.0–27.8Mbps) were saturated with disease-
resistance motifs, such as TIR-NBS-LRR, TIR-NBS, LRR
family protein, and R protein (Table 2; Supplementary File
1). They were annotated as “R proteins from
plant–pathogen interaction” and fell into categories of
“biotic stress response”, “response to stimuli”,
“plant–pathogen interaction”, as well as “transposable
elements”. Along with the statistical reports of 29.0% and
38.4% phenotypic variance, this genomic region is a
major-effect locus for disease resistance, indicating a
major potential hotspot for the biosynthesis of defense
metabolites.
The detection of a large-effect disease-resistance hot-

spot coincident with mQTLs for stilbenoid dimers and
trimmers, but not for monomers, is consistent with pre-
vious findings that the type, rather than the amount of
stilbenoids are more important in grapevine resistance to
pathogens3,9,10,27,28. Though previously touted as an
important phytoalexin in plant defense, resveratrol (i.e., a
stilbenoid monomer) has been reported to be less fungi-
toxic than stilbenoid dimers and trimers, such as
viniferins9,10.
In a recent QTL mapping of downy mildew and stil-

benoid induction, Vezzulli et al. reported a list of candi-
date genes underlying QTLs for downy mildew severity
and incidence, also mapped on chromosome 1829. These
candidate genes overlap with our major hotspot of
disease-resistance motifs on chromosome 18. In addition
in Vezzulli et al.’s findings, most polyphenol-related QTLs
were mapped on chromosome 16, while only cis- and
trans-piceid, astringin, isorhapontin, cis-Ɛ-viniferin, and
the sum of monomeric stilbenoid abundance wereTa
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mapped on chromosome 18. Stilbenoid mQTLs identified
in this study were found on chromosome 18, overlapping
the down mildew resistance region described by Vezzulli
et al.29.
Coincidentally, the identification of a disease-

resistance hotspot on chromosome 18 co-localizes
with previous QTL reports for downy mildew and
powdery mildew resistance in grapevine. Di Gaspero
et al. mapped the Rpv3 (resistance to Plasmopara viti-
cola or downy mildew) locus on chromosome 18 and
reported haplotypic structure at six microsatellite loci
spanning a 1.2-Mbp region from 24.8 to 26.0 Mbp on
chromosome 18, a region overlapping with our reported
mQTLs30. The Rpv3 locus was also linked with stilbe-
noid induction in a recent interspecific grapevine
population mapping study conducted by Vezzulli
et al.29. The resistance locus was inherited from “Sey-
val”, which is a grandparent in our F2 mapping family.
Another report on grapevine downy mildew resistance
also detected a major locus on chromosome 18, being
strongly associated with GF18-06 and GF18-08 markers
that were mapped on the 25.9–26.9-Mbp region31. The
resistant parent of the experimental population was GF.
GA-47-42, which was a cross between “Bacchus” and
“Seyval”31. Meanwhile, in grapevine powdery mildew-
resistance mapping, the Run2 (resistance to Uncinula
necator) was mapped on chromosome 18 for four traits
—leaf, cane, rachis, and fruit32. The locus is closely
linked to the VMC7f2 marker, anchored at a physical

position of 26.9 Mbp32, which is located within the
25.0–27.8-Mbp region of disease-resistance motifs.
Taken together, the co-localization of our mQTLs on

chromosome 18 with a major disease-resistance hotspot,
and three QTL findings on grapevine downy and powdery
mildews implied further support that the region is likely
associated with downy and powdery mildew resistance. In
the case of downy mildew resistance, the resistance donor
parent or progenitor in the experimental crosses is “Sey-
val”, the same F0 grandparent in our experimental F2
segregating family30,31. Given the preliminary observa-
tions of our analysis, further experiments need to be
carried out to characterize the roles of this region in
conferring resistance.
In addition to disease-resistance motifs, genes of two

other annotated metabolic pathways were quite ubiqui-
tous in this region (Chr. 18: 25.0–27.8Mbps). Genes
involved in flavonoid and terpenoid biosynthetic pathways
(Fig. 3), that are involved in the production of various
secondary metabolites, including those involved in plant
defense response, were associated with the loci33,34.

mQTLs on chromosomes 11, 14, and 18 associated mainly
with primary metabolism
With the exclusion of a handful of disease-resistance

genes, the genomic regions for mQTLs associated with
features M229.1423T503, M229.2006T789, and
M907.2767T765 appear to be populated with a suite of
genes linked with primary metabolism that are not
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haplotype was designated as “R”. Letter assignment indicates statistical significance based on Tukey’s significant difference test (p < 0.05)
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obviously connected to stilbenoid metabolism. In combi-
nation with the observation of disease-resistance motifs
highlighted in the aforementioned mQTL hotspot, it is
likely that these regions may also be associated with
plant–pathogen interaction. Secondary metabolism is of
great interest in plant–pathogen interaction because phy-
topathogen infection induces a plant’s defense program.
However, less is known about the effects of pathogenic
attack on primary metabolism. This is especially important
because most attacks (e.g., parasitic relationship) result in
yield losses without killing the crops. In particular, various
aspects of photosynthesis, assimilate partitioning, and
source–sink relationship are downstream physiological
changes of the infected tissues that need to be investigated
to understand the mechanisms and consequences of a
plant–pathogen interaction35–37.
Based on the network analysis, some of the functional

annotations in these genomic windows include the sig-
naling pathway, macromolecule transport, transcription
regulation, ubiquitin-mediated proteolysis, nucleic acid
metabolism, carbohydrate metabolism, and glycosyl
transference (Supplementary File 1)38. In addition to
genes related to primary metabolism, the annotation
indicates a peroxidase gene that appears to be involved in
the metabolism of phenylalanine, a precursor to various
biosynthetic pathways, such as phenylpropanoid, flavo-
noid, and stilbenoid pathways. Similar peroxidases have
been implicated in stilbenoid oligomerization and so may
be directly involved in the coupling of higher-order stil-
benoids13. Taken together, it is likely that these three
mQTL regions may be linked with plant–pathogen
interaction, both in primary and secondary metabolism.

Conclusion
In this study, we demonstrated the utility of combining

analytical tools (i.e., metabolic profiling) and large geno-
mic data sets to characterize the genetic basis of meta-
bolites. Despite the absence of compound identity and
structures, the use of high-resolution mass spectrometer
provided detection of various ions that can be treated as
metabolic “traits” and coupled with genetic maps for
mQTL mapping. Understanding the genetic controls of
potentially bioactive compounds (e.g., stilbenoids) can
assist breeders and viticulturists to select genotypes (e.g.,
seedlings, parents, and existing cultivars) with increased
levels of these biomarkers through marker-assisted
breeding.

Materials and methods
Sampling of plant materials
A segregating F2 mapping family was derived from self-

pollination of a single hermaphrodite F1 individual (16-9-
2), which was a hybrid from the initial F0 cross of V.
riparia 37 (USDA PI 588259) × “Seyval” (Seyve-Villard 5-

276), as previously described by Fennell et al.39. The
experimental family was grown and maintained in the
field in Brookings, SD. The original F2 mapping family
consists of 424 offspring that has been mapped for QTLs
of enological and environmental adaptation traits26,40. In
this study, a subset (N= 101) from the pilot-mapping
family was used for metabolic profiling and mQTL
mapping. Two to four cuttings of approximately three to
five inches of dormant woody stems from each of 101
progeny were collected between February 26, 2014 and
March 12, 2014. Samples were wrapped in aluminum foil
to prevent moisture loss, shipped on dry ice to Minnesota,
and stored at –80 °C until extraction and analysis.

Sample preparation and extraction
Woody stems were lyophilized for 24 to 36 h until all

moisture was removed. For each offspring, the dried
stems were ground together with a conventional coffee
grinder (Kuissential™ Ceramic Burr Coffee Grinder). In-
between samples, the grinder was cleaned and air-dried.
The ensuing steps, including chemical extraction, soni-
cation, centrifugation, evaporation, and adjusted recon-
stitution, were performed based on a facile extraction
method that was described by Pawlus et al.27.

Metabolic profiling with LC-HRMS
An aliquot (1 μL) of each reconstituted extract (0.2 μg/μL)

was injected and analyzed on an UltiMate 3000 UHPLC
coupled to a Q Exactive Hybrid Quadruple-Orbitrap mass
spectrometer (Thermo Fisher Scientific, USA). Samples
were chromatographically resolved at a flow rate of
0.45 mL/min on a C18-reverse-phase column (HSS T3,
2.1 mm i.d. ×100mm, 1.8-μm particle size; Waters, Mil-
ford, MA) by mixing mobile-phase solvent A (water with
0.1% formic acid) and solvent B (acetonitrile with 0.1%
formic acid) to generate the following gradient: 0 to 1 min,
2% B; 1 to 10min, 2 to 30% B; 10 to 12min, 30 to 50% B;
12 to 20min, 50 to 75% B; 20 to 22min, 75 to 98% B; 22 to
23min, 98 to 2% B; 23 to 27min, 2% B. The mass spec-
trometer was operated in the positive/negative switching
ionization mode over a scan range of 150–2000m/z. The
presence of monomers, dimers, trimers, and tetramers
was monitored using the [M+H]+ m/z values of 229,
445, 681, and 907, respectively. Ions yielded in the
[M–H]− mode were not used for mQTL mapping due to
ionization issues. UV/visible absorbance data were
simultaneously collected using the UltiMate 3000 UHPLC
diode array detector throughout each separation; spectra
with λmax values of 280 nm and 306 nm were consistent
with eluting stilbenoids.

Data pre-processing
Metabolomics data from LC-HRMS were processed in

XCMS for peak alignment with parameter settings
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optimized for the analysis (method= centWave; peak-
width= 5,20; snthresh= 10; ppm= 3.0; mzdiff= 0.01)41.
The aligned peaks were then subjected to grouping,
retention time correction, and regrouping with optimized
parameters (bw= 2; mzwid= 0.015; minfrac= 0.1). Fol-
lowing feature grouping and correction, peak filling was
performed using chromatography method in XCMS,
allowing integration of the area under the curve of sam-
ples that might have been missed during the group step.
However, XCMS peak picking software might still miss

the reporting of features in samples with lower abundance
or absence of metabolite ions, resulting in zero entries in
the generated peak table. These zero entries are con-
sidered missing values. In this experiment, imputation of
missing values was not performed, but features with > 10%
missing values in the offspring samples were not con-
sidered for subsequent QTL analysis to avoid potential
erroneous QTL detection. Of the 19 stilbenoid features,
14 contain no zero-intensity values, 1 (M453RT854)
contains a single zero-intensity value, 2 (M681RT759 &
M907RT765) contain 2 zero-intensity values, and 2
(M922T711 and M679T726) were ultimately excluded
with 93 zero-intensity values, and 97 zero-intensity values
respectively.

Linking metabolic features with a library of stilbenoid
masses
A list of accurate masses corresponding to 54 structu-

rally characterized stilbenoids was compiled from the
literature (Supplementary Table 1). Using this list, 19
features, out of the 1317 extracted using XCMS, were
found to match stilbenoid masses from this list. All 19
features were confirmed manually by examining extracted
ion chromatograms (EICs) generated from the raw data
files using Xcalibur 4.0 data visualization software for each
corresponding accurate mass value.

Stilbenoid metabolic quantitative trait locus (mQTL)
mapping
The intensities for each feature (with a mass matching a

stilbenoid and a unique retention time) were compiled for
each individual for subsequent mQTL mapping; each
individual stilbenoid metabolic feature (unique mass/
retention time pair) was treated as a metabolic “trait” for
the analysis.
A previously described genotype-by-sequencing single-

nucleotide polymorphism (SNP) map with 1449 markers
over 19 chromosomes was used for QTL analysis of 17 (2
were excluded with >10% missing values) of the 19 iden-
tified stilbenoid features26. As described by Yang et al., the
F2 genetic map is comprised < hkxhk >markers with lin-
kages estimated using cross-pollination cross type26.
QTLs with a recessive allele that cannot be detected in F1
may be detected in F2 because of the change in

segregation type from < lmxll > or < nnxnp > (2 genotypic
classes) to < hkxhk > (three genotypic classes). Targeted
mQTL detection was conducted on R/qtl software (ver-
sion 3.5.3) using interval mapping (IM) and composite
interval mapping (CIM)42. Interval mapping was per-
formed using scanone function (R/qtl) with
expectation–maximization (EM) algorithm. Composite
interval mapping was conducted using cim() function
with the Kosambi map function. The minimum logarithm
of odds (LOD) score for mQTL detection was determined
by genome-wide LOD significance thresholds (α= 0.10)
calculated using 1000 permutations.

Haplotype construction and analysis of mQTLs
A haplotype is defined by a combination or a group of

alleles that tend to be inherited together. Haplotype was
constructed by assigning alleles to offspring in a family
based on observed marker alleles that had already been
assigned during QTL analysis. At each mQTL, functional
SNP haplotype spanning the locus was constructed for the
progeny based on differential intensities of the feature.
Given that < hk × hk >marker type was used in the SNP
map, mQTL haplotyping was reported as haplotypic
dosage effects (i.e., A1A1, A1A2, and A2A2). A recombi-
nant haplotype was designated where there was a
recombination at the mQTL region. Analysis of variance
(ANOVA) was performed to determine if there was a
statistical difference owing to these haplotype dosage
effects. A post hoc Tukey’s analysis was used to identify
significant difference (p < 0.05).

Functional annotation of mQTLs
To gain more insights into the mQTL regions, the

physical positions of the markers defining the mQTLs
were used to identify genes associated with the loci using
the PN40024 12 × .v2, V2 annotation38,43. Gene functional
annotation and VitisNet pathways were used to explore
genes underlying the loci of interest. Genes associated
with the QTL were tested for enrichment in VitisNet
Pathways, using a 1000 permutations, a Fisher’s exact test
of p < 0.05 and a permuted p-value of p < 0.0538,44.
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